Install: Residual / Leakage Currents (I-LEAK PRO)

The inverter has detected residual currents greater than the allowed limit.

It is important to understand that most residual currents are generated by the PV Array and are out of the control of the inverter.

While Autarco’s Digitilisaed inverters utilize leakage current supression technology, they can only reduce the current, not eliminate it entirely.

Typically the I leak is a kind of ground fault that occurs when the inverter is in operation and current is flowing through the inverter circuit ( Parasitic Capacitance ). There are several things that can cause this fault listed below that we have found in the field so far. This is not a comprehensive list but ideas to use when troubleshooting.

  1. The DC + or – input of a DC string is swapped with another string in a different position, or a different inverter. If the string is crossed with another inverter strange things can happen, and I-leak is probable. Also you may only have one inverter that runs. If its swapped at the same inverter, you may see under production, and odd behavior from the inverter. This may also be at an RSD level.
  2. Minor ground faults are also a cause of Ileaks, especially if the wire insulation is not broken but reduced in the case of abrasion, or some other action that may cause the insulation to be less in a critical point. Water in conduit or in junction boxes can also cause Ileaks. This can include High humidity depending on the conditions.
  3. Running long wires to your array or to your transformer/Disconnect can cause an I-Leakage if your wires are undersized.  Be sure to do the appropriate analysis of your wire current capacity for the distance it’s running. This may also indicate an issue with the transformer itself.
  4. Low quality AC conductors can cause this issue if the wire is not in good shape from the wire pull or has damaged insulation in multiple locations.

To test the integrity of AC conductor insulation using a megohmmeter, use the following procedure:

  1. The AC breaker must be OFF to isolate the conductors under test from AC voltage, as well as from other AC circuit components.  Ensure that the AC switch on the inverter is OFF before testing to isolate the inverter’s AC circuitry from the high DC test voltage.  If the inverter does not have an AC switch, then the AC wires MUST be unlanded from their terminal blocks at the inverter prior to testing.
  2. We recommend a 1000 Vdc test voltage for 600 Vac rated conductors, measured line to ground and line to line.  The test voltage should applied for 30 seconds, or until the megohmmeter reaches its maximum resistance for the test voltage being used and holds the maximum resistance for 5 seconds (“pegs out”).
  3. If any AC conductors test at 0 MOhms resistance or markedly lower insulation resistance than the others, then both ends of the conductor must be unlanded and the conductor re-tested to establish that the issue is confined to the conductor and no other system components.

In certain situations where the use of RCD’s are required the leakage limit may be set to a lower value.

Please contact support for more information

This is an inverter driven issue.

Issue Creation

If the inverter sends a single message with this type of alarm in a 24hr period an issue will be created.

Resolution:

If a 24hr period passes with good production, and not futher alarms, the issue will be automatically resolved.

Empty section. Edit page to add content here.

Still need help? Please raise a case in Helios

How to Raise a Case